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HOMOGENIZATION AND FIELD CONCENTRATIONS IN
HETEROGENEOUS MEDIA∗

ROBERT LIPTON†

Abstract. A multiscale characterization of the field concentrations inside composite and poly-
crystalline media is developed. We focus on gradient fields associated with the intensive quantities
given by the temperature and the electric potential. In the linear regime these quantities are modeled
by the solution of a second order elliptic partial differential equation with oscillatory coefficients. The
characteristic length scale of the heterogeneity relative to the sample size is denoted by ε and the
intensive quantity is denoted by uε. Field concentrations are measured using the Lp norm of the
gradient field ‖∇uε‖Lp(D) for 2 ≤ p < ∞. The analysis focuses on the case when 0 < ε � 1. Explicit
lower bounds on lim infε→0 ‖∇uε‖Lp(D) are developed. These bounds provide a way to rigorously
assess field concentrations generated by the microgeometry without having to compute the actual
field uε.
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1. Introduction. The initiation of failure inside heterogeneous media is a mul-
tiscale phenomenon. Loads applied at the structural scale are often amplified by the
microstructure, creating local zones of high field concentration. The local amplifica-
tion of the applied field creates conditions that are favorable for failure initiation [8].
This paper focuses on gradient fields associated with the intensive quantities given
by the temperature and the electric potential inside heterogeneous media. The lo-
cal integrability of the gradient directly correlates with singularity strength, which
influences the onset of failure such as dielectric breakdown.

In this work it is shown how to assess the Lp integrability of the gradient fields in
microstructured media by investigating the multiscale integrability of suitably defined
quantities. The analysis is carried out with minimal regularity assumptions on the
coefficients describing the local properties inside the heterogeneous media. The results
are described in terms of the pth order moments of the solution of two-scale corrector
problems. The quantities are sensitive to microscopic field concentrations and can
become divergent for p > 2. This is in contrast to the well-known effective constitutive
properties, which are based upon local averages and are bounded above independently
of the microgeometry.

The results given here are presented in the context of two-scale homogenization
[1], [18]. We consider a bounded domain Ω in Rn, n ≥ 2. A common microstructure
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HOMOGENIZATION AND FIELD CONCENTRATIONS 1049

that admits a two-scale description is a simple generalization of a uniformly periodic
microstructure and is described as follows. Consider a partition of the domain Ω made
up of measurable subsets Ω�, � = 1, 2, . . . ,K, such that Ω = ∪K

�=1 Ω�. Inside each
subdomain Ω� we place a different periodic microstructure made from N anisotropic
heat conductors. This type of microstructure will be referred to as a piecewise periodic
microstructure [4]. Well-known engineering composites that are modeled by piecewise
periodic microstructures include fiber reinforced laminates [6], [19], [21].

The thermal conductivity tensor for the piecewise periodic microstructure is de-
scribed as follows. The indicator function for each of the subdomains Ω� is denoted
by χΩ�

(x), taking the value 1 for points in Ω� and 0 outside. In order to describe the
periodic microstructure inside the �th subdomain we introduce the unit period cell
Q. The configuration of the N phases inside Q is described by the indicator functions
χi
�(y), i = 1, . . . , N , associated with each phase. Here χi

�(y) = 1 for points inside the
ith phase and 0 outside. The length scale of the microstructure relative to the size of
the domain Ω is given by εk = 1/k, k = 1, 2 . . . . The microstructure is obtained by
rescaling the configuration inside the unit period cell. The indicator function of the
ith conductor in the microstructured composite is given by

χεk
i (x) = χi(x,x/εk) =

K∑
�

χΩ�
(x)χi

�(x/εk).(1.1)

The local conductivity tensor Aεk has a two-scale structure and is given by

Aεk(x) = A(x,x/εk) =

N∑
i

Aiχi(x,x/εk).(1.2)

Other heterogeneous media that are amenable to similar or more general two-scale
descriptions include polycrystalline materials such as metals and ceramics. We state
the general hypotheses under which the two-scale homogenization theory applies; see
[1] and [2]. It is assumed that A(x,y) is a matrix defined on Ω × Q and there exist
positive numbers α < β such that for every vector η in Rn,

α|η|2 ≤ A(x,y)η · η ≤ β|η|2.(1.3)

The conductivity Aij(x,y) is Q-periodic in the second variable, Aij(x,x/εk) is
measurable and satisfies

lim
εk→0

∫
Ω

∣∣∣∣Aij

(
x,

x

εk

)∣∣∣∣
2

dx =

∫
Ω×Q

|Aij(x,y)|2 dxdy,(1.4)

and for any suitable two-scale trial field ψ(x,y),

lim
εk→0

∫
Ω

Aij

(
x,

x

εk

)
ψ

(
x,

x

εk

)
dx =

∫
Ω×Q

Aij(x,y)ψ(x,y) dxdy.(1.5)

The convergence given by (1.5) is a weak convergence and is known as two-scale con-
vergence [1], [18]. The space of suitable two-scale trials is denoted by L2[D;Cper(Q)].
Here Cper(Q) denotes Q-periodic continuous functions defined on R3, and the space
L2[D;Cper(Q)] is the space of functions h : Ω → Cper(Q) which are measurable and
satisfy

∫
Ω
‖h(x)‖2

Cper(Q)dx < ∞. The norm ‖h(x)‖Cper(Q) is defined by supy∈Q |h(x,y)|.
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1050 ROBERT LIPTON

In what follows, no other regularity hypothesis on the conductivity matrix A(x,y) is
made.

The temperature field uεk associated with the conductivity tensor field Aεk(x) =
A(x,x/εk) is the solution of the equilibrium equation

−div (Aεk(x)∇uεk) = f in Ω(1.6)

with the boundary conditions given by uεk = 0 on ∂ΩD and n ·Aεk∇uεk = g on ∂ΩN

with ∂ΩD ∩ ∂ΩN = ∅ and ∂Ω = ∂ΩD ∪ ∂ΩN .
In what follows, we consider the limit as εk tends to zero. We fix a subdomain D

of Ω and derive lower bounds on

lim inf
εk→0

‖∇uεk‖Lp(D).(1.7)

The lower bound is expressed in terms of a two-scale integral that encodes the field
amplification properties of the microstructure. It is formulated in terms of the solution
of the homogenized problem together with a local corrector matrix that captures the
interaction between the periodic microstructure and the gradients of the homogenized
temperature field. The bounds introduced here provide a rigorous way to assess field
concentrations generated by the microgeometry without having to compute the full
solution uεk .

We consider an orthonormal basis for Rn and denote the basis vectors by ei,
i = 1, . . . , n. The lower bound is given in terms of the solutions wi(x,y) to the local
periodic problem. For each x in Ω, the function wi(x,y) is a Q-periodic function of
the second variable y and is a solution of

divy

(
A(x,y)(∇yw

i(x,y) + ei)
)

= 0,(1.8)

with
∫
Q
wi(x,y) dy = 0. The corrector matrix P (x,y) is defined by

Pij(x,y) = ∂yjw
i(x,y) + δij ,(1.9)

where δij = 1 for i = j and 0 otherwise. The associated effective conductivity tensor
AE(x) is given by

AE(x) =

∫
Q

A(x,y)P (x,y) dy.(1.10)

The two-scale homogenization theory gives the following theorem [1].
Theorem 1.1 (two-scale homogenization theorem). The sequence of solutions

{uεk}εk>0 of (1.6) converges weakly to uH(x) in H1(Ω), where uH is the solution of
the homogenized problem

−div
(
AE(x)∇uH(x)

)
= f(x) in Ω,

uH(x) = 0 on ∂ΩD, and

n ·AE∇uH = g on ∂ΩN .(1.11)

The field concentration functions of order p are defined by

fp(x,∇uH(x)) ≡
(∫

Q

|P (x,y)∇uH(x)|p dy
)1/p

, 2 ≤ p ≤ ∞,(1.12)
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HOMOGENIZATION AND FIELD CONCENTRATIONS 1051

and fp(x,∇uH(x)) ≤ fq(x,∇uH(x)) for p ≤ q. It is clear that fp corresponds to a
pth order moment of the corrector matrix (1.9) and that

f∞(x,∇uH(x)) ≡ lim
p→∞

(∫
Q

|P (x,y)∇uH(x)|p dy
)1/p

.(1.13)

Theorem 1.2 (lower bounds on field concentrations). For 2 ≤ p < ∞,

(∫
D

(
fp(x,∇uH(x))

)p
dx

)1/p

≤ lim inf
εk→0

‖∇uεk‖Lp(D).(1.14)

For multiphase conductivity problems with coefficients described by (1.2), the
field concentration functions of order p are defined for each phase and are given by

f i
p(x,∇uH(x)) ≡

(∫
Q

χi(x,y)|P (x,y)∇uH(x)|p dy
)1/p

, i = 1, . . . , N, 2 ≤ p ≤ ∞,

(1.15)

and f i
p(x,∇uH(x)) ≤ f i

q(x,∇uH(x)) for p ≤ q. As before, one defines

f i
∞(x,∇uH(x)) ≡ lim

p→∞

(∫
Q

χi(x,y)|P (x,y)∇uH(x)|p dy
)1/p

.(1.16)

For this case, lower bounds on

lim inf
εk→0

‖χεk
i ∇uεk‖Lp(D)(1.17)

are given by the following theorem.
Theorem 1.3 (lower bounds for multiphase composites). For 2 ≤ p < ∞,

(∫
D

(
f i
p(x,∇uH(x))

)p
dx

)1/p

≤ lim inf
εk→0

‖χεk
i ∇uεk‖Lp(D).(1.18)

The bounds can be applied to develop a Chebyshev inequality for the distribu-
tion functions associated with the sequence {χεk

i |∇uεk |}εk>0. Here the distribution
function λεk

i (D, t) gives the measure of the set inside D, where χεk
i |∇uεk | > t.

Arguing as in Proposition 2.1 of [12] and combining with (1.18) gives the following.
Theorem 1.4 (homogenized Chebyshev inequality).

lim sup
εk→0

λεk
i (D, t) ≤ t−p

(∫
D

(
f i
p(x,∇uH(x))

)p
dx

)
≤ t−p lim inf

εk→0
‖χεk

i ∇uεk‖pLp(D).

(1.19)

We point out that Theorems 1.2 and 1.3 are obtained using the minimum regular-
ity assumptions on the coefficients Aεk . Because of this, the hypotheses of Theorem 2.6
in [1] do not apply, and one cannot take advantage of the strong convergence given
in that theorem. Instead, the theorems are proved using a perturbation approach
introduced in [11] and [13]; see also our section 2.

The lower bounds are sensitive to the presence of singularities generated by the
microstructure. To illustrate this we consider a microstructure made from a periodic
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1052 ROBERT LIPTON

1

Fig. 1. Unit period cell with Schulgasser crystallites embedded inside a material with unit
thermal conductivity.

distribution of uniaxial crystallites embedded in an isotropic matrix of unit conduc-
tivity. The period cell for the composite is illustrated in Figure 1. Each crystallite
occupies a sphere and has conductivity λ1 in the radial direction and λ2 in the tan-
gential direction. The dispersion of the N crystallites is specified by ∪N

� B(y�, r�),
where B(y�, r�) denotes the �th sphere centered at y� with radius r�. Each crystallite
has a conductivity tensor given by

A(y) = λ1n ⊗ n + λ2(I − n ⊗ n),(1.20)

where n = (y−y�)/|y−y�| for y in B(y�, r�) and I is the 3× 3 identity. Outside the
crystallites we set A(y) = I. It is assumed that the aggregate of crystallites occupy a
portion of the unit cell Q of volume 0 < θ < 1. It is noted that the conductivity inside
each crystallite is precisely the one employed in the Schulgasser sphere assemblage [22].

When a constant gradient field is applied to a single isolated crystallite and when
λ1 > λ2, the crystallite exhibits a gradient field singularity at its center. In what
follows, we use the lower bound (1.14) to show how this local information affects
the integrability of the sequence {∇uεk}εk>0. We form Aεk = A(x/εk) and consider
solutions uεk of (1.6). To fix ideas we choose f to be in Lr(Ω) for r > 3 and g to
be in L2(∂ΩN ). In what follows, λ2 is restricted to lie in the interval 1/2 < λ2 < 1,
and λ1 = 1/(2λ2 − 1). For this choice it is shown in section 3 that the homogenized
temperature field uH is the solution of (1.11) with AE = I.

For D compactly contained in Ω, it follows from the Lp theory [15] that
‖∇uH‖Lp(D) < ∞ for every 1 ≤ p < ∞. On the other hand, calculation and ap-
plication of Theorem 1.2 show that

LB(p) × ‖∇uH‖Lp(D) ≤ lim inf
εk→0

‖∇uεk‖Lp(D),(1.21)

where

LB(p) =

{
3pθ(2λ2−1)

2(1−λ2)(
3

2(1−λ2)−p)
+ (1 − θ) for p < 3

2(1−λ2)
,

+∞ for p ≥ 3
2(1−λ2)

.
(1.22)

D
ow

nl
oa

de
d 

01
/1

0/
20

 to
 1

67
.9

6.
14

5.
17

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



HOMOGENIZATION AND FIELD CONCENTRATIONS 1053

For a fixed choice of λ2, the value pc = 3
2(1−λ2)

satisfies 3 < pc < +∞, and we have

lim inf
εk→0

‖∇uεk‖Lp(D) = +∞ for p ≥ pc.(1.23)

This is in stark contrast to the Lp integrability of the gradient of the homogenized
solution, which holds for any p < +∞. It is clear from this example that the infor-
mation carried by the homogenized problem is not adequate and misses the singular
behavior exhibited by the sequence {∇uεk}εk>0. This example shows that failure
initiation criteria based solely upon the solution of the homogenized equations will be
optimistic. The inequalities given above are established in section 3.

The maximum integrability exponent for the gradient of the solution of the local
problem (1.8) is referred to as the threshold exponent for the composite. The threshold
exponent is introduced in the work of Milton [16] and measures the worst singularity
of the gradient field. The threshold exponent is precisely pc for the local problem
considered here and corresponds to the divergence in the lower bound for p ≥ pc.

Next we consider an example for which the sequence {∇uεk}εk>0 is uniformly
bounded in Lp for some class of coefficients and right-hand sides f . For this case we
show that the lower bound given in Theorem 1.2 is attained. In this example we make
use of the a priori estimates for {∇uεk}εk>0 developed in Theorem 4 of Avellaneda
and Lin [3]. Let Ω be a C1,α domain (0 < α ≤ 1) and suppose for 0 < γ ≤ 1, C > 0,
that A(y) ∈ Cγ(Rn) and ‖A(y)‖Cγ(Rn) ≤ C. Then we choose Aεk = A(x/εk). For
δ > 0 suppose 2 ≤ q ≤ n + δ and f ∈ Lq and set 1/q̂ = 1/q − 1/(n + δ). Given these
choices, we consider the W 1,2

0 (Ω) solutions uεk of

−div (Aεk(x)∇uεk) = f in Ω.(1.24)

It is shown in section 4 that (1.14) holds with equality for every p such that p < q̂.
In fact, it is seen more generally that, for p < q̂ and any Carathéodory function
ψ : D × Rn → R satisfying

|ψ(x, η)| ≤ |η|p for a.e. x ∈ D and η ∈ R3,(1.25)

we have

lim
εk→0

∫
D

ψ(x,∇uεk(x)) dx =

∫
D

∫
Q

ψ(x, P (y)∇uH(x)) dydx.(1.26)

This is established in section 4.

It is anticipated that there are several classes of conductivity coefficients and
right-hand sides f for which the lower bounds are attained. In this direction we point
out the a priori estimates given in [7], [9], [10], and [23].

We conclude by noting that the analogues of the field concentration functions
(1.12) and (1.15) have appeared earlier in the contexts of G-convergence and random
media; see [11] and [12]. In those treatments they are shown to provide upper bounds
for the distribution function of the local stress and electric field for G-convergent
sequences of elasticity tensors and random dielectric tensors.

2. Derivation of the lower bounds. We recall the weak formulation of the
εk > 0 problem given by (1.6). Let V denote the closure in H1(Ω) of all smooth
functions that vanish on ∂ΩD. We suppose that f is in L2(Ω) and g belongs to
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1054 ROBERT LIPTON

L2(∂ΩN ). The function uεk belonging to V is the solution of the weak formulation of
the boundary value problem given by∫

Ω

A(x,x/εk)∇uεk · ∇ϕdx =

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds(2.1)

for every ϕ in V . Here ds is an element of surface area.
In order to express the two-scale weak formulation of (1.11) we introduce the fol-

lowing function spaces. The space of square integrable Q-periodic mean zero functions
with square integrable derivatives is denoted by H1

per(Q)/R. The norm of an element
v in this space is denoted by ‖v‖H1

per(Q)/R. The space of measurable functions h from Ω

to H1
per(Q)/R for which

∫
Ω
‖h(x)‖2

H1
per(Q)/R

dx < ∞ is denoted by L2[Ω;H1
per(Q)/R].

This function space was introduced for the description of the two-scale homogenized
problem in [18]. The weak formulation of the two-scale homogenized problem (1.11)
is given by the unfolded variational principle [1], [5], [14].

Theorem 2.1 (unfolded variational principle). The pair (uH , u1) is the unique
solution in V × L2[Ω;H1

per(Q)/R] of∫
Ω

∫
Q

A(x,y)(∇uH(x) + ∇yu1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx

=

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds(2.2)

for every (ϕ,ϕ1) in V × L2[Ω;H1
per(Q)/R]. Moreover,

∇uH + ∇yu1(x,y) = P (x,y)∇uH(x).(2.3)

In order to establish Theorems 1.2 and 1.3 we recall the function spaces used in the
description of two-scale convergence [14]. The space Cper(Q) denotes Q-periodic con-
tinuous functions defined on R3. For 1 ≤ r < ∞, the space Lr[D;Cper(Q)] is the space
of functions h : D → Cper(Q), which are measurable and satisfy

∫
D
‖h(x)‖rCper(Q)dx <

∞. Here ‖h(x)‖Cper(Q) = supy∈Q |h(x,y)|. The intersection of the spaces L∞(D×Q)
and Lr[D;Cper(Q)] is denoted by V r. For 1 < r < ∞ we introduce 1 < r′ < ∞ such
that 1

r + 1
r′ = 1. We establish Theorems 1.2 and 1.3 with the aid of the following

lemmas.
Lemma 2.1 (localization lemma). Fix a domain of interest D inside Ω. Let

q(x,y) be any test function in V r; then one can pass to the limit εk → 0 in the
sequence of solutions {uεk}εk>0 of (1.6) to obtain

lim
εk→0

∫
D

q(x,x/εk) |∇uεk |2 dx =

∫
D

∫
Q

q(x,y) |P (x,y)∇uH(x)|2 dy dx.(2.4)

For multiphase composites with coefficients described by (1.2) we restrict our
attention to the inside of each phase and state the following lemma.

Lemma 2.2 (localization lemma in multiphase composites). Let q(x,y) be any
test function in V r; then one can pass to the limit εk → 0 in the sequence of solutions
{uεk}εk>0 of (1.6) to obtain

lim
εk→0

∫
D

q(x,x/εk)χ
εk
i (x) |∇uεk |2 dx

=

∫
D

∫
Q

q(x,y)χi(x,y) |P (x,y)∇uH(x)|2 dy dx.(2.5)
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HOMOGENIZATION AND FIELD CONCENTRATIONS 1055

The proofs of Lemmas 2.1 and 2.2 are given at the end of this section.
To illustrate the ideas, we use Lemma 2.2 to establish Theorem 1.3, noting that

Theorem 1.2 follows from Lemma 2.1 in the same way.
Proof of Theorem 1.3. For each εk > 0, we apply Hölder’s inequality to the left

side of (2.5) to obtain∫
D

∫
Q

q(x,y)χi(x,y) |P (x,y)∇uH(x)|2 dy dx

≤ lim
εk→0

(∫
D

|q(x,x/εk)|r dx
)1/r

lim inf
εk→0

(∫
D

χεk
i (x) |∇uεk |2r′ dx

)1/r′

.(2.6)

Noting [14] that

lim
εk→0

(∫
D

|q(x,x/εk)|r dx
)1/r

=

(∫
D

∫
Q

|q(x,y)|r dy dx

)1/r

≡ ‖q(x,y)‖Lr(D×Q),

(2.7)

we obtain

∫
D

∫
Q
q(x,y)χi(x,y) |P (x,y)∇uH(x)|2 dy dx

‖q(x,y)‖Lr(D×Q)

≤ lim inf
εk→0

(∫
D

χεk
i (x)|∇uεk |2r′dx

)1/r′

.

(2.8)

Since V r is dense in Lr(D ×Q), we substitute an approximation of

χi(x,y) |P (x,y)∇uH(x)|2r′−2

for q in (2.8) to find that

(∫
D

∫
Q

χi(x,y) |P (x,y)∇uH(x)|2r′dy dx

)1/r′

≤ lim inf
εk→0

(∫
D

χεk
i (x)|∇uεk |2r′dx

)1/r′

.

(2.9)

Theorem 1.3 follows for 2 < p < ∞ upon taking the square root on both sides of (2.9).
The case p = 2 follows immediately upon choosing q(x,y) = 1 in Lemma 2.2.

We conclude by providing the proof of Lemma 2.2; note that the proof of Lemma
2.1 is identical.

Proof of Lemma 2.2. The indicator function of the set of interest D is denoted by
χD(x). We choose a test function q(x,y) in V r and set p(x,y) = χD(x)χi(x,y)q(x,y).
For δβ > 0 we form the perturbed conductivity tensor Ãij(x,y) = Aij(x,y) +

δβp(x,y)δij . We choose δβ sufficiently small so that Ã(x,y) satisfies (1.3). By

construction, Ã(x,x/εk) is measurable and satisfies (1.4) and (1.5). Consider the
associated solution ũεk in V of the weak formulation of the boundary value problem
given by ∫

Ω

Ã(x,x/εk)∇ũεk · ∇ϕdx =

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds for every ϕ in V.(2.10)

Set ũεk = uεk + δuεk ; subtraction of (2.1) from (2.10) gives∫
Ω

Ã(x,x/εk)∇δuεk · ∇ϕdx +

∫
Ω

δβ p(x,x/εk)∇uεk · ∇ϕdx = 0.(2.11)
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1056 ROBERT LIPTON

Choosing ϕ = uεk in (2.11) and applying the identity∫
Ω

A(x,x/εk)∇uεk · ∇δuεk dx =

∫
Ω

fδuεk dx +

∫
∂ΩN

gδuεk ds(2.12)

gives

δβ ×
∫

Ω

p(x,x/εk)|∇uεk |2 dx + T εk = −
∫

Ω

fδuεk dx −
∫
∂ΩN

gδuεk ds,(2.13)

where

T εk = δβ ×
∫

Ω

p(x,x/εk)(∇δuεk) · ∇uεk dx.(2.14)

Next set ϕ = δuεk in (2.11); it then follows from Cauchy’s inequality and (1.3) that

‖∇δuεk‖L2(Ω) ≤ Cδβ,(2.15)

where here and throughout C denotes a generic constant independent of εk. From
this it is evident that

|T εk | < Cδβ2.(2.16)

Next we pass to the εk → 0 limit and apply Theorems 1.1 and 2.1 to find that the
sequence {ũεk}εk>0 converges weakly in H1(Ω) to ũH , where (ũH , ũ1) is the solution
in V × L2[Ω;H1

per(Q)/R] of∫
Ω

∫
Q

Ã(x,y)(∇ũH(x) + ∇yũ1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx

=

∫
Ω

fϕ dx +

∫
∂ΩN

gϕ ds(2.17)

for every (ϕ,ϕ1) in V × L2[Ω;H1
per(Q)/R]. Set ũH − uH = δuH , ũ1 − u1 = δu1;

subtraction of (2.2) from (2.17) gives∫
Ω

∫
Q

Ã(x,y)(∇δuH(x) + ∇yδu1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx

+

∫
Ω

∫
Q

δβp(x,y)(∇uH(x) + ∇yu1(x,y)) · (∇ϕ(x) + ∇yϕ1(x,y)) dy dx = 0.(2.18)

Choosing (ϕ,ϕ1) = (uH , u1) in (2.18) together with the identity∫
Ω

∫
Q

A(x,y)(∇uH(x) + ∇yu1(x,y)) · (∇δuH(x) + ∇yδu1(x,y)) dy dx

=

∫
Ω

fδuH dx +

∫
∂ΩN

gδuH ds(2.19)

gives

δβ ×
∫

Ω

∫
Q

p(x,y)|P (x,y)∇uH(x)|2 dy dx + T̃

= −
∫

Ω

fδuH dx −
∫
∂ΩN

gδuH ds,(2.20)
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HOMOGENIZATION AND FIELD CONCENTRATIONS 1057

where

T̃ = δβ ×
∫

Ω

∫
Q

p(x,y)(∇δuH + ∇yδu1(x,y)) · (∇uH + ∇yu1(x,y)) dx.(2.21)

Next set (ϕ,ϕ1) = (δuH , δu1) in (2.18); it then follows from Cauchy’s inequality and
(1.3) that

‖∇δuH + ∇yδu1‖L2(Ω×Q) ≤ Cδβ,(2.22)

and it follows easily that

|T̃ | < Cδβ2.(2.23)

Taking the εk → 0 limit in (2.13), noting that limεk→0 δu
εk = δuH (weakly in H1(Ω)),

and recalling (2.16) gives

δβ × lim
εk→0

∫
Ω

p(x,x/εk)|∇uεk |2 dx + O(δβ2) = −
∫

Ω

fδuH dx −
∫
∂ΩN

gδuH ds.

(2.24)

Lemma 2.2 now follows immediately from (2.20), (2.23), and (2.24) and from identi-
fying like powers of δβ.

3. Explicit lower bounds for aggregates of Schulgasser crystallites. In
this section we derive the lower bound (1.22) for the microstructure consisting of
Schulgasser crystallites embedded within a homogeneous matrix with unit thermal
conductivity. The temperature field inside the unit period cell Φi(y) = wi(y) + yi is
the solution of the local problem

divy

(
A(y)(∇yw

i(y) + ei)
)

= 0,(3.1)

with wi Q-periodic and
∫
Q
wi(y) dy = 0. For this microstructure, A(y) is given by

(1.20) for y in B(y�, r�) and A(y) = I outside. Here we restrict λ2 to the interval
(1/2, 1) and choose λ1 so that λ1 = 1/(2λ2−1). A calculation shows that the solution
Φi(y) is given by

Φi =

{
yi, y ∈ Q \ ∪N

�=1 B(y�, r�),
r1−α
� |y − y�|α−1(yi − y�

i ) + y�
i , y ∈ B(y�, r�),

(3.2)

where α = 2λ2 − 1. The corrector matrix P (y) is given by

P (y) =

{
I, y ∈ Q \ ∪N

�=1 B(y�, r�),
r1−α
� |y − y�|α−1(I + (α− 1)n ⊗ n), y ∈ B(y�, r�),

(3.3)

where n = (y − y�)/|y − y�| for y ∈ B(y�, r�). A direct calculation shows that

AE =

∫
Q

A(y)P (y) dy = I.(3.4)

Next we provide the lower bound for
∫
Ω

∫
Q
|P (y)∇uH(x)|p dy dx. Note for any η in

R3 that PT (y)P (y)η · η = |P (y)η|2. The smallest eigenvalue λ(y) of PT (y)P (y)
delivers the lower bound λ(y)|η|2 ≤ |P (y)η|2 and∫

Ω

∫
Q

λ(y)p/2|∇uH(x)|p dy dx ≤
∫

Ω

∫
Q

|P (y)∇uH(x)|p dy dx.(3.5)
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1058 ROBERT LIPTON

Calculation shows that

λ(y) = α2r
2(1−α)
� |y − y�|2(α−1)(3.6)

for y ∈ B(y�, r�) and λ(y) = 1 for y ∈ Q \ ∪N
� B(y�, r�). The lower bound (1.22)

follows upon substitution of (3.6) into (3.5).

4. Optimality of the lower bounds. Conditions are presented on f and A(y)
for which the lower bound (1.14) is attained for a range of exponents 2 < p < q̂.
We suppose, as in Avellaneda and Lin [3], that Ω is a C1,α domain (0 < α ≤ 1)
and suppose for 0 < γ ≤ 1, 0 < C, that A(y) ∈ Cγ(Rn) and ‖A(y)‖Cγ(Rn) ≤ C.
We set Aεk = A(x/εk). For δ > 0 suppose 2 ≤ q ≤ n + δ and f ∈ Lq and set
1/q̂ = 1/q− 1/(n+ δ). Given these choices, we consider the W 1,2

0 (Ω) solutions uεk of

−div (Aεk(x)∇uεk) = f in Ω.(4.1)

Theorem 4 of [3] shows that there exists a constant independent of εk for which

‖∇uεk‖Lq̂(Ω) ≤ C‖f‖Lq(Ω)(4.2)

holds for every εk > 0. Subject to these hypotheses it will be shown that the lower
bound (1.14) is attained for p < q̂.

Passing to a subsequence if necessary we start by considering the Young measure ν
associated with the sequence {P (x/εk)∇uH(x)}εk>0. Here ν is represented by a fam-
ily of probability measures ν = {νx}x∈Ω depending measurably on x. We denote by
C0(R

n) the set of continuous functions ϕ defined on Rn such that limη→∞ ϕ(η) = 0.
Elementary arguments show that

〈νx, ϕ〉 =

∫
Rn

ϕ(η)dνx(η) =

∫
Q

ϕ(P (z)∇uH(x))dz a.e. x ∈ Ω,(4.3)

for every ϕ in C0(R
n). From corrector theory [17] there exists an exponent r ≥ 1 for

which one has the strong convergence

lim
εk→0

‖∇uεk − P (x/εk)∇uH‖Lr(Ω) = 0.(4.4)

The strong convergence (4.4) shows that both sequences

{∇uεk}εk>0 and {P (x/εk)∇uH(x)}εk>0

share the same Young measure; see, for example, Lemma 6.3 of [20]. From (4.2) it fol-
lows, on passage to a subsequence if necessary, that {|∇uεk |p}εk is weakly convergent
in L1(Ω); thus,

lim
εk→0

∫
D

|∇uεk |p dx =

∫
D

∫
Rn

|η|p dνx(η) dx =

∫
D

∫
Q

|P (z)∇uH(x)|p dz dx,(4.5)

and optimality follows. Last, it follows immediately from Proposition 6.5 of [20] that
for every Carathéodory function ψ(x, η) satisfying the growth condition (1.25) (on
passage to a subsequence if necessary)

lim
εk→0

∫
D

ψ(x,∇uεk) dx =

∫
D

∫
Rn

ψ(x, η) dνx(η) dx,(4.6)

and (1.26) follows since (4.3) implies that∫
D

∫
Rn

ψ(x, η) dνx(η) dx =

∫
D

∫
Q

ψ(x, P (z)∇uH(x)) dz dx.(4.7)
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tionnelle et Numérique de l’Université d’Alger, 1978 (in French). English translation in
Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R. V.
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